Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2601: 203-229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36445586

RESUMO

Membrane fluidity is a critical parameter of cellular membranes, which cells continuously strive to maintain within a viable range. Interference with the correct membrane fluidity state can strongly inhibit cell function. Triggered changes in membrane fluidity and associated impacts on lipid domains have been postulated to contribute to the mechanism of action of membrane targeting antimicrobials, but the corresponding analyses have been hampered by the absence of readily available analytical tools. Here, we expand upon the protocols outlined in the first edition of this book, providing further and alternative protocols that can be used to measure changes in membrane fluidity. We provide detailed protocols, which allow straightforward in vivo and in vitro measurement of antibiotic compound-triggered changes in membrane fluidity and fluid membrane microdomains. Furthermore, we summarize useful strains constructed by us and others to characterize and confirm lipid specificity of membrane antimicrobials directly in vivo.


Assuntos
Fluidez de Membrana , Microscopia , Espectrometria de Fluorescência , Membrana Celular , Lipídeos
2.
Microbiology (Reading) ; 167(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723787

RESUMO

Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr -1, -1.5, -2, -3, -3.2 or -5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos , Polimixinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...